转载自http://www.cnblogs.com/dolphin0520/archive/2011/08/26/2155202.html
单源最短路径问题,即在图中求出给定顶点到其它任一顶点的最短路径。在弄清楚如何求算单源最短路径问题之前,必须弄清楚最短路径的最优子结构性质。
一.最短路径的最优子结构性质
该性质描述为:如果P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,k和s是这条路径上的一个中间顶点,那么P(k,s)必定是从k到s的最短路径。下面证明该性质的正确性。
假设P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,则有P(i,j)=P(i,k)+P(k,s)+P(s,j)。而P(k,s)不是从k到s的最短距离,那么必定存在另一条从k到s的最短路径P'(k,s),那么P'(i,j)=P(i,k)+P'(k,s)+P(s,j)<P(i,j)。则与P(i,j)是从i到j的最短路径相矛盾。因此该性质得证。
二.Dijkstra算法
由上述性质可知,如果存在一条从i到j的最短路径(Vi.....Vk,Vj),Vk是Vj前面的一顶点。那么(Vi...Vk)也必定是从i到k的最短路径。为了求出最短路径,Dijkstra就提出了以最短路径长度递增,逐次生成最短路径的算法。譬如对于源顶点V0,首先选择其直接相邻的顶点中长度最短的顶点Vi,那么当前已知可得从V0到达Vj顶点的最短距离dist[j]=min{dist[j],dist[i]+matrix[i][j]}。根据这种思路,
假设存在G=<V,E>,源顶点为V0,U={V0},dist[i]记录V0到i的最短距离,path[i]记录从V0到i路径上的i前面的一个顶点。
1.从V-U中选择使dist[i]值最小的顶点i,将i加入到U中;
2.更新与i直接相邻顶点的dist值。(dist[j]=min{dist[j],dist[i]+matrix[i][j]})
3.知道U=V,停止。
代码实现:
/*Dijkstra求单源最短路径 2010.8.26*/ #include#include #define M 100#define N 100using namespace std;typedef struct node{ int matrix[N][M]; //邻接矩阵 int n; //顶点数 int e; //边数 }MGraph; void DijkstraPath(MGraph g,int *dist,int *path,int v0) //v0表示源顶点 { int i,j,k; bool *visited=(bool *)malloc(sizeof(bool)*g.n); for(i=0;i 0&&i!=v0) { dist[i]=g.matrix[v0][i]; path[i]=v0; //path记录最短路径上从v0到i的前一个顶点 } else { dist[i]=INT_MAX; //若i不与v0直接相邻,则权值置为无穷大 path[i]=-1; } visited[i]=false; path[v0]=v0; dist[v0]=0; } visited[v0]=true; for(i=1;i 0&&min+g.matrix[u][k]